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Launch vehicle structural responses can couple with transonic #ow state transitions at the nose
of payload fairings. This self-sustained coupling yields a nonlinear equation of motion that can
be analyzed using the force}response relationship and the periodicity condition. The traditional
analysis approach for this phenomenon, however, linearizes the equation of motion by convert-
ing the alternating #ow forces into an aerodynamic damping term and de"nes a stability
criterion as the response amplitude that yields zero net system damping. This work clari"es the
relationship between the present and traditional methods, and compares results and con-
clusions. The feasibility of modifying a launch vehicle response analysis of bu!eting (random
pressure #uctuations caused by turbulent #ow) to include aeroelastic coupling e!ects is also
explored. The aerodynamic sti!ness and damping terms formulated herein are consistent with
trends observed in wind-tunnel test data. It is shown, however, that the modi"ed bu!et analysis
can be inaccurate, particularly when the aeroelastic coupling contribution does not dominate
the system response. ( 2000 Academic Press
1. INTRODUCTION

DURING TRANSONIC FLIGHT the #ow at the cone cylinder junction of launch vehicle payload
fairings can alternate between separated and attached states (Chevalier & Robertson 1963;
Robertson & Chevalier 1963). Schlieren photographs from Robertson & Chevalier (1963)
are reproduced in Figure 1. A #ow state change on the leeward side of the payload fairing
model (with a 253 nose cone angle) is evident when the angle of attack equals two degrees.
Because the pressure pro"les for the separated and attached states are di!erent, the #ow
state change imposes an exciting force on the launch vehicle. Investigations of self-sustained
coupling of this force with launch vehicle elastic responses have been conducted using three
di!erent approaches. Computational #uid dynamics has been used in conjunction with
structural dynamic models to predict the launch vehicle behavior (Azevedo 1989; Chen &
Dotson 1999). This approach is purely analytical but is computationally intensive and
limited by the accuracy of the transonic aerodynamic formulation.
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Figure 1. Schlieren photographs of #ow state change observed in wind-tunnel tests for M
=
"0)89: (a) 03 angle

of attack; (b) 23 angle of attack. Reproduced with permission of Arnold Engineering Development Center.

Figure 2. Schematic of one cycle of steady-state coupled force and response in present theory.*, Normalized
force variation m

a
; - - - -, payload fairing rotation.
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The other two methods are more tractable for analysis of this phenomenon and use
steady experimental data to quantify the pressure distributions on the payload fairing. The
unsteady force variation is idealized, and the #ow alternations are triggered when the
de#ection angle reaches a critical value. Ericsson (1967), in the "rst of these two semiempiri-
cal methods, assumed that the #ow state changes instantaneously after an implicit time lag
and that the alternations occur on only one side of the payload fairing. More recently,
Dotson et al. (1998a) analyzed the e!ects of #ow state changes that occur linearly during an
explicit time lag and on both sides of the payload fairing, as shown in Figure 2. Because
most launch vehicles #y with an angle of attack close to zero degrees, and because most
payload fairing shapes exhibit #ow state alternations for small angle-of-attack values, the
two-sided alternations are generally representative of #ight conditions. One-sided and
instantaneous #ow state changes can, however, also be analyzed using the techniques
employed by Dotson et al. (1998a).
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Ericsson (1967) linearized the equation of motion by converting the force from the #ow
alternations into an aerodynamic damping term corresponding to harmonic response at the
vehicle bending mode frequency. A stability criterion was next de"ned as the limit-cycle
amplitude that corresponds to zero net system damping. Dotson et al. (1998a), in
contrast, established the steady-state behavior of the launch vehicle using analysis tech-
niques for multifrequency periodic excitation. The frequency and amplitude of the limit-
cycle oscillations were derived directly, that is, without introducing an aerodynamic
damping term.

Self-sustained oscillations for the Titan IV launch vehicle were evaluated by Dotson et al.
(1998b), and it was shown that the responses and loads can be more than an order of
magnitude smaller than those predicted by the Ericsson (1967) stability criterion. It was,
furthermore, shown that this di!erence can be traced to the value of the time lag de"ned
explicitly by Dotson et al. (1998a) and implicitly by Ericsson (1967). There are two major
implications of this "nding: "rst, the stability criterion concept can be misleading because
a "nite limit-cycle amplitude always exists for structurally damped launch vehicles; second,
it is essential that the estimate of the magnitude of the time lag be reasonable, otherwise the
predicted launch vehicle responses and loads will be unrealistically large. This overpredic-
tion can have highly undesirable programmatic impacts, such as vehicle redesign and
launch &&no-go'' decisions due to lower thresholds on measured day-of-launch winds.

Even though it is unnecessary to de"ne an aerodynamic damping term to determine the
limit-cycle amplitude for launch vehicle aeroelastic coupling, it is common, in a variety of
#ow-induced vibration problems, to equate self-sustained oscillation with a change in the
system damping for one or more of the system modes. For example, the &&galloping'' of
ice-laden cables and the vortex-induced oscillation of stacks are civil engineering problems
that have been thus analyzed (Dowell 1995). In aeronautical engineering, the torsional
response of wings in transonic #ow has been expressed as a reduction in net system damping
(Mabey 1989). Indeed, launch vehicle aeroelastic coupling belongs, with transonic wing
torsion and aircraft control surface &&buzz'', in the class of single-degree-of-freedom prob-
lems involving feedback between transonic shock-wave motion and structural responses.
Experimental and empirical solutions are typically used for these problems because the
aerodynamic nonlinearities are signi"cant (Dowell 1995).

Equations of motion presented by Ericsson (1967) imply that launch vehicle responses
caused by bu!eting (that is, by random pressure #uctuations associated with turbulent #ow)
can be analyzed using modi"ed bending mode sti!ness and damping values that account for
aeroelastic coupling e!ects. Bu!et forcing functions have broad-band spectra, and bu!eting
analyses typically include numerous system modes for accurate response and load predic-
tions. Theoretically, in a modi"ed bu!et approach, the sti!ness and damping values would
be altered for the bending mode speculated to experience aeroelastic coupling, and
the response analysis would be conducted for the linear multi-degree-of-freedom
system. Application of this methodology does not appear to have been demonstrated for
launch vehicle aeroelastic coupling. It is interesting to note, however, that such
procedures have been developed for the prediction of bridge #utter including bu!eting
e!ects (Dowell 1995).

The feasibility of a modi"ed launch vehicle bu!et analysis is investigated herein. Analyti-
cal results are provided using Titan IV system parameters. It is shown that a bu!et analysis
without aeroelastic coupling e!ects must be conducted prior to calculating the modi"ed
sti!ness and damping values, and that the bending mode response from a modi"ed bu!et
analysis can be inaccurate. The derivations of the reduced system damping (and ancillary
sti!ness e!ect) nevertheless place launch vehicle aeroelastic coupling within the context of
other #ow-induced vibration problems.
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2. ANALYSIS APPROACH

2.1. AIRLOADS METHODOLOGY

The equations of motion for the coupled system are given by

[I]Mq( (t)N#[C*]MqR (t)N#[u2]Mq (t)N"[/]T
f
MF(t)N, (1)

in which

Mx (t)N"[/]Mq(t)N. (2)

Nomenclature is de"ned in Appendix C.
In a rigorous treatment of the transonic system responses, the vector MF(t)N would include

time-consistent forces induced by bu!eting, wind gusts, control system parameters, static
aeroelasticity, and vehicle maneuvering, as well as those caused by aeroelastic coupling
(Fleming 1994). However, because it is impossible to predict the amplitudes and phasing of
the forces that will occur during the actual #ight, a rigorous prelaunch analytical treatment
is untenable (Kabe 1998). In practice, equation (1) is broken up into constituent airloads
events that are analyzed separately and are treated statistically (Fleming 1994). The mean
and dispersed values for each of the dynamic load components are predicted, and total
loads are computed using a combination equation that yields values for a speci"ed
probability of nonexceedance during #ight (Macheske et al. 1993). The present analysis is
consistent with this practice in that the vector MF (t)N includes predictions of external forces
induced by aeroelastic coupling and bu!eting but neglects those caused by other transonic
phenomena.

2.2. SINGLE-MODE AEROELASTIC COUPLING

Computational #uid dynamic analyses (Azevedo 1989; Chen & Dotson 1999) suggest that
launch vehicle responses are dominated by coupling with a single (generally the funda-
mental) system bending mode. Numerical studies conducted by Dotson et al. (1998b) also
indicate that a single mode is excited by an alternating #ow force, unless the frequencies of
the higher-order components in its Fourier series expansion are very close to the frequencies
of other system modes in the plane of the excitation. Equation (1), therefore, can generally
be approximated by the governing di!erential equation for a single-degree-of-freedom
system. This simpli"cation has traditionally been exploited for the analysis of launch vehicle
aeroelastic coupling.

However, matrix formulations of aerodynamic sti!ness and damping exist for the
computation of wind-induced launch vehicle loads (Dotson & Tiwari 1996), and could
conceivably be developed for transonic alternating #ow forces. In this case, modal coupling,
represented by o!-diagonal aerodynamic sti!ness and damping terms, would be computed
and the system response would be composed of numerous modal contributors. However,
given the semiempirical nature of the force}response relationship, and the apparent single-
degree-of-freedom behavior of launch vehicle aeroelastic coupling, it is believed that this
comprehensive matrix formulation is unwarranted.

Extracting from equation (1) the modal equation that best represents the ith system
bending mode yields
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The / values in equation (3) correspond to the points in the launch vehicle model at which
the discrete force histories are applied. The "rst term on the right-hand side of equation (3)



AEROELASTIC COUPLING OF LAUNCH VEHICLE 1149
represents the generalized force history for aeroelastic coupling. The two force resultants in
this summation are de"ned by steady pressure pro"les for the alternating #ow states, and
are described in further detail by Dotson et al. (1998a). The alternating #ow forces are
a function of the generalized displacement q

t,i
, because the changes in #ow state occur when

the de#ection angle of the payload fairing nose cone equals a critical value, as shown in
Figure 1.

Dotson et al. (1998a) proved, using energy principles, that the generalized aeroelastic
coupling force must be out of phase with the vehicle response to induce limit cycle
oscillation. For the Titan IV at Mach 0)8, the amplitudes F

a,1
and F

a,2
equal 6)7 and

26)2 kN, respectively (Dotson et al. 1998a). The corresponding generalized force history is
in-phase with the vehicle response; the #ow state changes consequently cannot induce limit
cycle oscillation for this particular vehicle. Herein, the signs of these force resultants are
arti"cially reversed so that the generalized force history is out of phase with the vehicle
response, and Titan IV modal data can be used to analyze bu!eting responses with
aeroelastic coupling e!ects. The fundamental pitch bending mode for a Titan IV mission
with a 26)2 m long payload fairing was selected for the present study. The frequency and
damping of this mode equal 1)27 Hz and 0)71%, respectively.

2.3. PARAMETRIC FORMULATION

The maximum static value of the generalized response from aeroelastic coupling alone is
de"ned by

q
45
"u~2D/

1
F
a,1

#/
2
F

a,2
D, (4)

in which the subscript i has been dropped for convenience. The value from equation (4) is
not constant during transonic #ight because the magnitude and location of the force
resultants vary with respect to Mach number. If the maximum value of equation (4) during
transonic #ight is used, normalization of equation (3) with respect to (4) yields
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The #ow state changes initiate when the response equals

z
#3
"h

#3
/D/

r,n
D q

45
. (7)

The range of the scalar s in equation (6) is given by 04s41, such that s"0 corresponds
to the absence of #ow state changes and s"1 corresponds to the maximum contribution of
aeroelastic coupling to the total system response. When bu!eting is ignored, equation (5)
reduces to the nonlinear equation analyzed by Dotson et al. (1998a). The bu!eting term
m
b
(t), therefore, acts as noise superimposed on the force variation shown in Figure 2.
The value of s changes as the vehicle #ies through the transonic region; it begins with

s"0, increases to s"1 at the maximum aeroelastic coupling time, and "nally returns to
s"0 near Mach 1. The signal-to-noise ratio, therefore, generally increases, then decreases,
with respect to Mach number and time. In the example to be presented, maximum
aeroelastic coupling occurs around Mach 0)8, in accordance with Titan IV #ight data
(Dotson et al. 1998b).

The Titan IV bu!et generalized force during transonic #ight is shown in Figure 3(a).
Ninety-eight [m in equation (3)] bu!et forcing functions with frequency content up to 50 Hz
are applied to all components of the Titan IV vehicle. These bu!et forces are based on wind



Figure 3. Time history of normalized Titan IV bu!et generalized force for fundamental pitch bending mode:
(a) 0}50 Hz content; (b) 0}3 Hz content.
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tunnel test data but include modi"cations to ensure conservative response predictions
relative to observed #ight data. The maximum value of the bu!eting noise in Figure 3(a)
exceeds unity, the amplitude of the aeroelastic coupling force variation. However, the time
history in Figure 3(a) is dominated by frequency components in the 10}20 Hz range and, as
shown in Figure 3(b), the amplitude of the content around the frequency of the vehicle
fundamental bending mode is relatively low. Indeed, it will be shown that aeroelastic
coupling dominates the Titan IV bending response when s is large.

3. AEROELASTIC COUPLING ANALYSIS

Before developing the modi"ed bu!et analysis methodology, it is necessary to review
solutions for limit-cycle oscillation without bu!eting. This section highlights the procedural
steps, but also provides analysis conclusions and response comparisons not previously
documented.

3.1. MULTIFREQUENCY SOLUTION

In Dotson et al. (1998a) the closed-form solution for the steady-state response of an
undamped linear system subjected to the force shown in Figure 2 is used as a trial function
for the limit-cycle response from the nonlinear system. The trial function is, therefore,
established using the equation of motion

z( (q)#2fuzR (q)#u2z (q)"u2 m(q), 04q4¹
e
, (8)
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where f is taken to equal zero and the subscript a has been dropped for the sake of clarity. It
was shown that the undamped solution accurately predicts the damped response for the
f-range typical of launch vehicle bending modes. The excitation period ¹

e
is treated as an

adjustable parameter, de"ned by energy principles, once the trial function has been estab-
lished.

The force variation shown in Figure 2 is antisymmetric about the mid-point of the
excitation period. In this case, the steady-state linear response is also antisymmetric such
that

z(¹
e
/2#q)"!z(q), 04q4¹

e
/2, (9a)

zR (¹
e
/2#q)"!zR (q), 04q4¹

e
/2. (9b)

The solution of equation (8) over each piece-wise-linear force segment in the "rst half-cycle
is given by
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There are 10 unknown constants in equations (10a)}(10e). Eight of the conditions
required to determine the unknowns are established by the continuity of displacements and
velocities at the boundaries between the time regions. The remaining two equations are
de"ned by the periodicity requirement and are given by equations (9a) and (9b) with q"0.
The analytic expressions for these constants are provided in Appendix B.

Finally, in order to satisfy the displacement requirements indicated by the circles in
Figure 2, the response from equation (10) is shifted in the direction of the origin by the
amount *t/2. The trial function is now admissible for the nonlinear equation of motion. It
can be shown that the amplitude of the response from equation (10) is de"ned by

AF"

[sin(u *t)/u*t] cos(ut
a
)![(1!cos(u *t))/u*t] sin(ut

a
)

cos (u¹
e
/4)

!1, (11)

where the values t
a

and ¹
e

are established below. The response amplitude represents
a dynamic ampli"cation factor because the equation of motion was normalized with respect
to the static displacement value.

For periodic motion, the work conducted by the alternating #ow force must equal the
energy dissipated by structural damping during each response cycle. This equality leads to
the relationship

P
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When *t@¹
e
, substitution of equation (10) into (12) yields the characteristic equation
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from which the period ¹ can be computed.

e
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The time point t
a
de"nes the force pulse width t

p
and is related to the critical nose rotation

for #ow state changes. The identity z
#3
"z(t

a
) leads to the analytic expression

(2z
#3
#1) cos(u¹

e
/4)"(u*t) sin(u¹

e
/4!2u t

a
)#cos (u¹

e
/4!2ut

a
), (14)

from which the value t
a
can be computed.

3.2. HARMONIC APPROXIMATION

The linear response de"ned by equation (10) is equivalent to that from Fourier analysis,
provided an in"nite number of harmonic terms is retained. In other words, application of
the method of harmonic balance (Nayfeh & Mook 1979) must converge to the result
summarized above as the number of terms increases. Harmonic balance, however, becomes
unwieldy in this case, and its use was restricted in Dotson et al. (1998a) to a single term. It
was shown that the single-term solution (henceforth called the harmonic approximation) is
illustrative and su$ciently accurate under certain conditions.

The admissible response function is given by

z"AF sin (u
e
(q#*t/2)). (15)

The fundamental term in the Fourier series expansion of the force variation is given by
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p
/¹

e
) sin (u

e
q), (16)

when *t@¹
e
. Next, equations (15) and (16) are substituted into equation (8). In accordance

with the method of harmonic balance, equating the coe$cients of the resulting cosine terms
yields

u¹
e
/2"n/J1#4f/u*t. (17)

Equation (17) is valid for all critical nose rotation values or, in other words, for all force
pulse widths. Equating the coe$cients of the sine terms similarly yields
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The identity z
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) leads to the analytic expression for the force pulse width of the stable

limit-cycle response
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Finally, substituting equation (19) into (18) yields the response amplitude
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Equation (20) indicates that a limit cycle exists only when 04z
#3
4f*t/f. The upper bound

of this range is in reasonable agreement with that from the multifrequency solution, and
corresponds to an unstable limit cycle. For larger values of z

#3
, the response spirals in the

phase plane to a state of rest.



Figure 4. Aeroelastic coupling simulation and analytic histories with f"1)27 Hz, f"0)71%, and *t"7 ms:
(a) force variation; (b) normalized displacement; (c) normalized velocity. *, Numerical analysis; . . . , multi-

frequency solution; } } } }, harmonic approximation.
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3.3. RESPONSE COMPARISONS

The multifrequency solution and harmonic approximation are compared in Figure 4 with
the numerical solution of the nonlinear equation of motion. The Titan IV system para-
meters were used with a 7 ms time lag, a value supported by Titan IV #ight data (Dotson
et al. 1998b). The critical payload fairing nose cone rotation for the #ow state changes was
taken as $0.0053 (z

#3
"0)1), the value at which the time point t

a
vanishes. In this case, the

force variation oscillates without dwelling at zero and produces the maximum aeroelastic
coupling response. The results from the numerical analysis and the multifrequency solution
are virtually indistinguishable, but the displacement and velocity amplitudes for the har-
monic approximation are 6)5 and 12% too low, respectively. The harmonic approximation
always underestimates the response amplitude; however, its accuracy improves as the
salient ratio f*t/f becomes large (Dotson et al. 1998a).

3.4. REDUCED FREQUENCY

Equation (20) shows that the amplitude of the limit-cycle response varies almost linearly
with respect to the time lag *t. The value of this parameter depends on the mechanisms that
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de"ne aeroelastic coupling, and can be expressed as a generalized time lag consisting of
components attributable to structural dynamic and aerodynamic e!ects (Dotson et al.
1998b). The structural dynamic component, used implicitly in the traditional formulation
(Ericsson 1967), is much larger than that attributable to aerodynamics, but has not been
substantiated by #ight or wind tunnel test data. Indeed, time lag values extracted from Titan
IV #ight data are relatively close in magnitude to the aerodynamic component alone
(estimated as the distance between the alternating force resultants F

a,1
and F

a,2
divided by

an approximate #ow convection speed).
Dotson et al. (1998b) concluded that further work is needed to characterize the nature of

the coupling mechanisms and that the time lag should be treated as an explicit analysis
variable. It is interesting to note, however, that the concept of reduced frequency k (Dowell
1995) can be introduced if *t is expressed as ¸/;

=
, where ¸ is the appropriate length scale

for the coupling mechanism. In this case, k"u¸/;
=

may be substituted everywhere the
product u*t appears in the foregoing analytic expressions. [As an example, the frequency
and time lag values used herein ( f"1)27 Hz and *t"7 ms, respectively), yield k"0)06,
which corresponds to a derived length ¸"1)5 m.] Therefore, all of the derivations, results,
and conclusions provided herein may be expressed in terms of reduced frequency, once the
mechanisms for launch vehicle aeroelastic coupling have been "rmly established.

4. NUMERICAL SIMULATIONS

The bu!eting noise plotted in Figure 3(a) is considered to be valid for all transonic Mach
numbers, and to be una!ected by local angle-of-attack changes caused by the vehicle
bending mode response. The generalized bu!eting force, therefore, is treated strictly as
a function of time and can be classi"ed as an ideal energy source (Nayfeh & Mook 1979).
This approach has traditionally been used by the launch vehicle community for dynamic
analysis of launch vehicle loads induced by bu!eting.

4.1. COMPUTER ALGORITHM

The simulation computer algorithm presented by Dotson et al. (1998a) was modi"ed to
include bu!eting noise. The modi"ed code is used herein to assess the e!ect of bu!eting on
the aeroelastic coupling response and to validate equations for the e!ective system fre-
quency and damping. At each time step, the bu!eting force m

b
is added to the aeroelastic

coupling force sm
a
[see equation (6)]. Because bu!eting a!ects the system response, the force

variation m
a

di!ers from that without bu!eting.
The schematic in Figure 2 corresponds to steady-state motion and a linear variation of

the aeroelastic coupling force during the time lag *t. The numerical analysis, on the other
hand, includes the transient phase of the response and de"nes the ramp as a quarter-cycle of
a squared sinusoid in the displacement domain. The latter feature eliminates force discon-
tinuities, at the end points of the time lag, that can compromise the stability of the numerical
analysis. When the time lag is small with respect to the period of the excitation, the squared
sinusoid yields a force variation in the time domain that is, for all practical purposes, linear.
The aeroelastic coupling force variation is taken to be out of phase with the response as
required for self-sustained oscillation.

Figure 5 shows a schematic of the phase plane diagram, for one response cycle, as
implemented in the numerical analysis. The top and bottom parts illustrate the aeroelastic
coupling force variation de"ned by

m
a
"u (z

t
)#g (z

t
, sgn zR

t
), (21)



Figure 5. Schematic of phase-plane diagram and transient aeroelastic coupling force variation for one response
cycle.
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The value of d is positive and less than z
#3

, and is chosen such that the aeroelastic coupling
force variation exhibits the desired time lag *t at the limit-cycle state. The computer code
solves equation (5), given initial displacement and velocity values. Convergence of the
solution is veri"ed by reducing the integration time step and repeating the analysis.

4.2. NUMERICAL RESULTS

Figure 6(a) shows the phase-plane diagram for the Titan IV parameters without bu!eting
noise. The initial conditions for this simulation are given by zero velocity, and displacement
equal to the limit-cycle amplitude, 2)7. Figure 6(b) shows the e!ect of bu!eting noise when
s"1, that is, when the aeroelastic coupling contribution is at its maximum. It can be
concluded from Figures 6(a) and 6(b) that the inclusion of bu!eting noise prevents the
system response from attaining a true limit cycle. The aeroelastic coupling contribution,
however, is large enough that the deviations from the limit-cycle state are not severe, and
the response is quasiperiodic.

Phase-plane diagrams for numerical simulations with the arbitrarily chosen values
s"0)5 and 0)2 are shown in Figures 6(c) and 6(d), respectively. Because the system
displacement is normalized with respect to the maximum aeroelastic contribution, the
initial condition z (0) and critical de#ection z

#3
are scaled by s. Figure 6(c) shows that s(1



Figure 6. Phase-plane diagram from simulation with f"1)27 Hz, f"0)71%, and *t"7 ms: (a) s"1;
(b) s"1; (c) s"0)5; (d) s"0)2. *, With bu!eting; - - - -, without bu!eting.
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increases the relative deviation from the limit-cycle state. Figure 6(d) shows that, when the
value of s is small enough, the system response cannot be described as a simple perturbation
from that without bu!eting.

Force and system displacement histories from the numerical simulation, with s"1, are
provided in Figures 7(a) and 7(b), respectively. Histories with and without bu!eting noise
are shown, as well as the system displacement from bu!eting noise alone. These "gures
further illustrate that, for the Titan IV example, aeroelastic coupling dominates when the
signal-to-noise ratio is large.

5. MODIFIED BUFFET ANALYSIS

5.1. SEPARATION OF RESPONSE CONTRIBUTIONS

To assess the e!ects of bu!eting in combination with aeroelastic coupling, equation (5) is
split into constituents such that

z(
a
(t)#2fu zR

a
(t)#u2z

a
(t)"u2m

a
(z

a
), (24)

z(
b
(t)#2fu zR

b
(t)#u2z

b
(t)"u2m

b
(t), (25)



Figure 7. Histories from simulation with f"1)27 Hz, f"0)71%, *t"7 ms, and s"1: (a) force variation;
(b) normalized displacement. *, With bu!eting; - - - -, without bu!eting; 00, bu!eting only.
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in which

z
t
(t)"sz

a
(t)#z

b
(t), zR

t
(t)"szR

a
(t)#zR

b
(t), (26a,b)

z(
t
(t)"sz(

a
(t)#z(

b
(t) (26c)

and the subscript-a terms are de"ned by aeroelastic coupling without bu!eting.
Equation (26) is approximate because response superposition is valid only for linear

systems. The approximation is acceptable, however, if the bu!eting contribution does not
signi"cantly alter the time points at which the system response reaches the critical value for
changes in the #ow state. In this case, the aeroelastic coupling force variation is close to that
without bu!eting, as shown in Figure 8(a). Equation (26), therefore, is most useful when the
signal strength s is large. As the value of s decreases, the aeroelastic coupling force variation
becomes a!ected by the bu!eting response and the accuracy of the approximation dimin-
ishes. Figure 8(b) con"rms that m

a
di!ers signi"cantly from the limit-cycle state when the

value of s is small.

5.2. CONVERSION OF ALTERNATING FLOW FORCES

Conversion of the aeroelastic coupling force variation into equivalent aerodynamic sti!ness
and damping terms is sought, such that

z(
a
(t)#(2fu#gR )zR

a
(t)#(u2#g)z

a
(t)"0. (27)

Equation (27) can also be expressed as

z(
a
(t)#2u (f#nR )zR

a
(t)#u2 (1#n) z

a
(t)"0. (28)

The terms n and nR modify the system frequency and damping, respectively.



Figure 8. Aeroelastic coupling component of force variation history, from simulation with f"1)27 Hz,
f"0)71%, and *t"7 ms: (a) s"1; (b) s"0)2. *, With bu!eting; - - - -, without bu!eting.
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Equation (28) yields the conventional di!erential equation for a single-degree-of-freedom
linear system:

z(
a
(t)#2f

a
u

a
zR
a
(t)#u2

a
z
a
(t)"0 (29)

when frequency and damping are de"ned by

u
a
"u J1#n, f

a
"(f#nR )/J1#n, (30a,b)

and the aerodynamic sti!ness and damping terms n and nR are time-invariant.
The aeroelastic coupling response now originates from speci"ed initial conditions

because force no longer appears in the equation of motion. The solution of equation (29) is
given by

z
a
(t)"e~fauat Cza (0) cos (uN

a
t)#A

zR
a
(0)#f

a
u

a
z
a
(0)

uN
a

B sin (uN
a
t)D , (31)

in which

uN
a
"u

a
J1!f2

a
. (32)

The exponential in equation (31) can have three e!ects: if f
a
(0, the response grows without

bound; if f
a
'0, the response tends to rest; and if f

a
,0, the response is periodic.

Dotson et al. (1998a) used energy principles to prove, and numerical simulations
to validate, that when the generalized force caused by the #ow state change opposes
the bending mode response, and the initial conditions are larger than known critical values,
structurally damped systems always attain a stable limit cycle. (The critical initial
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conditions in the phase plane are related to the nose rotation for #ow state changes, and
de"ne an unstable limit cycle.) Only for the unrealistic case in which f,0 will the system
response diverge, that is, become unbounded and fail to attain a limiting amplitude.
Therefore, e!ective damping f

a
ultimately equals zero, which leads to the identity

nR ,!f. (33)

Dotson et al. (1998a) further showed that if the phase-plane coordinates (z(0), zR (0)) lie
outside of the stable limit cycle, the transient response diminishes, which implies that the
e!ective system damping is initially positive. Similarly, if the phase-plane coordinates
(z(0), zR (0)) lie between the stable and unstable limit cycles, the transient response increases,
which implies that the e!ective system damping is initially negative. This dependence of the
e!ective system damping value on the initial conditions and time is typical of self-sustained
oscillators (Nayfeh & Mook 1979).

A time-invariant value of e!ective damping f
a
, therefore, cannot be de"ned, unless

the initial conditions conform exactly to the limit-cycle state. This case is used herein for
the modi"ed bu!et analysis. Fortunately, the limit-cycle state is of most interest from
a response standpoint. That is, if the initial conditions lie outside of the limit cycle, the
"nal response state is more benign than the initial one. Similarly, if the initial conditions
lie inside of the limit cycle, the "nal amplitude is greater and is given by the limit cycle
response.

The conversion of periodic #ow force alternations into an aerodynamic damping term is
constrained by equation (33). It is evident from equation (30a) that the aerodynamic sti!ness
term is similarly constrained by

n,(u
a
/u)2!1,( f¹

e
)~2!1. (34)

Figure 9 illustrates equation (34) using ¹
e
values from equation (13). Aerodynamic sti!ness

n is always positive. Equation (30a) indicates that the e!ective system frequency is, therefore,
Figure 9. Normalized aerodynamic sti!ness: *, multifrequency solution; - - - -, harmonic approximation.
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always higher than the natural frequency of the bending mode. This frequency increase is
intuitive; the generalized force opposes the system response and, hence, sti!ens the system.
However, as the salient ratio f*t/f increases, the modi"cation diminishes to zero, and the
e!ective system frequency tends to the natural frequency.

Using equations (17) and (34), it is easy to show that the harmonic approximation yields

n"4f/u*t. (35)

This expression is compared in Figure 9 with the multifrequency solution. The agreement is
reasonable, particularly for the higher values of f*t/f.

When f
a
,0, equation (29) reduces to

z(
a
(t)#u2

a
z
a
(t)"0, (36)

which has a steady-state harmonic as its solution. Hence, the aeroelastic coupling response
is harmonic when the step-like forcing function is implicitly converted into time-invariant
aerodynamic sti!ness and damping terms. The force variation m

a
can instead be explicitly

moved from the right- to the left-hand side of the equation of motion. This approach,
developed in Appendix A, shows that the aerodynamic sti!ness and damping terms are
time-dependent in a multifrequency formulation.

5.3. COMBINATION OF RESPONSE CONTRIBUTIONS

The equation of motion for the total system response can now be reformulated by summing
equations (25) and (36), with the scalar s, such that

z(
t
(t)#2fu [zR

t
(t)!szR

a
(t)]#u2[z

t
(t)#nsz

a
(t)]"u2 m

b
(t). (37)

Equation (37) is still unsuitable because it requires aeroelastic coupling displacement and
velocity histories. Unless the time dependence of the aeroelastic coupling contribution is
removed, there is no bene"t in using equation (37), which is approximate, rather than the
exact formulation given by equation (5). In other words, time-invariant sti!ness and
damping coe$cients that account for the aeroelastic coupling e!ects are required if
a modi"ed bu!et analysis is sought. To this end, a relative measure R of the aeroelastic
coupling and total responses must be introduced such that

z(
t
(t)#2fu [1!sR (zR

a
/zR

t
)] zR

t
(t)#u2 [1#nsR(z

a
/z

t
)] z

t
(t)"u2 m

b
(t). (38)

Herein, the value of R is established using the root-mean-square (r.m.s.) values of the
aeroelastic coupling and bu!eting response time histories. In this case, equation (38) yields

z(
t
(t)#2fu (1!s zR

a,3.4
/zR

t,3.4
) zR

t
(t)#u2(1#nsz

a,3.4
/z

t,3.4
) z

t
(t)"u2 m

b
(t). (39)

Equation (39) can be written in the conventional form for a single-degree-of-freedom linear
system

z(
t
(t)#2f

t
u

t
zR
t
(t)#u2

t
z
t
(t)"u2

t
m@
b
(t), (40)

in which

f
t
"f A

1!szR
a,3.4

/zR
t,3.4

J1#nsz
a,3.4

/z
t,3.4
B , u

t
"u J1#nsz

a,3.4
/z

t,3.4
, (41a,b)

m@
b
(t)"

m
b
(t)

1#nsz
a,3.4

/z
t,3.4

. (41c)



AEROELASTIC COUPLING OF LAUNCH VEHICLE 1161
Recall that bu!eting noise is considered an ideal energy source and, hence, strictly
a function of time. In this case, the aeroelastic coupling and bu!eting responses are
uncorrelated and the r.m.s. value of the total response can be approximated by

z
t,3.4

"J(sz
a,3.4

)2#z2
b,3.4

, zR
t,3.4

"J(szR
a,3.4

)2#zR 2
b,3.4

. (42a,b)

Aeroelastic coupling modi"es the system frequency and damping, but the solution of
equation (40) nevertheless fails to account for the limit-cycle oscillations, unless appropriate
initial conditions such as

z
t
(0)"AF, zR

t
(0)"0 (43a,b)

are speci"ed.
In order to implement equation (40), it is necessary to: (i) de"ne r.m.s. values of the

steady-state aeroelastic coupling displacement and velocity; (ii) conduct a transient bu!et-
ing analysis without aeroelastic coupling e!ects; (iii) compute the r.m.s. value of the
bu!eting displacement and velocity; (iv) calculate the sti!ness, damping, and force modi"ca-
tions using equation (41); and "nally, (v) repeat the transient bu!eting analysis with the
modi"ed parameters.

Several features of equation (40) should be noted. First, as the aeroelastic coupling
response diminishes, equation (40) reduces to equation (25); similarly, as the bu!eting force
tends to zero, equation (40) reduces to equation (36). Second, the e!ective damping value,
de"ned by equation (41a), is nonnegative and has the range 04f

t
4f. Third, as a conse-

quence, the aeroelastic coupling component, introduced through the initial conditions,
generally decreases over the analysis duration. And "nally, the value of s "rst increases, then
decreases, as the launch vehicle #ies through the transonic region, with the result that the
e!ective frequency and damping values vary with Mach number.

5.4. EXAMPLE PROBLEM

A modi"ed bu!et analysis was conducted using the Titan IV parameters. The closed-form
equations for the multifrequency solution indicate that AF"2)7, z

a,3.4
"1)9, and
Figure 10. Phase-plane diagram from modi"ed bu!et analysis with f"1)27 Hz, f"0)71%, *t"7 ms, and
s"1.



Figure 11. Displacement history with f"1)27 Hz, f"0)71%, and *t"7 ms: (a) s"1; (b) s"0)5.*, Simula-
tion; - - - -, modi"ed bu!et analysis.
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zR
a,3.4

"18)7 s~1 for limit-cycle oscillation without bu!eting noise (cf. Figure 4). A transient
bu!eting analysis, without aeroelastic coupling e!ects and with zero initial conditions,
yields z

b,3.4
"0)4 [cf. Figure 7(b)] and zR

b,3.4
"3)0 s~1. Equations (40)} (43), with these

response values and s"1, yield the phase-plane diagram shown in Figure 10. This plot
should be compared with Figure 6(b), the phase-plane diagram de"ned by the numerical
simulation. The di!erences, which are most evident at the maximum velocity (force alterna-
tion) time points, are caused by the approximations necessary for derivation of equations
(40)}(42). Corresponding system displacement histories are plotted in Figure 11(a). The
phase and amplitude of the modi"ed bu!et response are in reasonable agreement with the
numerical simulation when s"1.

The modi"ed bu!et analysis was also implemented for the arbitrarily chosen value
s"0)5. The resulting displacement histories are shown in Figure 11(b). In this case, the
methodology initially underpredicts, then, in the last 10 s of the analysis, signi"cantly
overpredicts the system response. As the value of s decreases, the aeroelastic coupling force
variation becomes in#uenced by bu!eting (see Figure 8), which compromises the periodicity
assumed in estimating the aeroelastic coupling contribution to the total system response.

5.5. GENERAL ASSESSMENT OF AEROELASTIC COUPLING EFFECTS

Trends in e!ective system frequency and damping are best illustrated using the
harmonic approximation of the aeroelastic coupling response, which was de"ned



Figure 12. Aeroelastic coupling e!ects as a function of signal strength: (a) system frequency; (b) system damping.
*, z

#3
"0; - - - -, z

#3
"f*t/f.
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in Section 3.2. In this case, the aeroelastic coupling r.m.s. values can be expressed in closed
form as

z
a,3.4

"( f*t/f)S1#S1!A
z
#3

f*t/fB
2

, 04z
#3
4f*t/f, (44a)

zR
a,3.4

"u J1#4f/u*t z
a,3.4

. (44b)

Figure 12(a) shows curves of frequency, as a function of s, constructed using the modi"ed
bu!et analysis with the Titan IV parameters and the harmonic approximation for aeroelas-
tic coupling. Results for three values of f*t/f, and the z

#3
-range for limit-cycle oscillation, are

illustrated. Since the values of f and f are known for the Titan IV example (0)71% and
1)27 Hz, respectively), the curves actually re#ect variations in the time lag. For example,
f*t/f"1 corresponds to *t"5)5 ms. Similarly, z

#3
can be explicitly evaluated, and z

#3
"

f*t/f"1 corresponds to h
#3
"$0)053. Figure 12(a) indicates that aeroelastic coupling only

modestly increases the e!ective system frequency, particularly for large values of f*t/f. As
aeroelastic coupling decreases relative to bu!eting (that is, as the value of s decreases), the
system frequency tends to the natural frequency of the vehicle bending mode.

Corresponding curves of e!ective system damping are shown in Figure 12(b). In contrast
to the e!ective system frequency, the e!ective system damping depends strongly on the
aeroelastic coupling signal strength. A modest contribution from aeroelastic coupling (that
is, a small value of s) can lead to a signi"cant drop in e!ective system damping, even for
relatively small values of the time lag. Figure 12(a,b), furthermore, shows that increasing the
magnitude of the time lag reduces the e!ect on system frequency, but exacerbates the e!ect
on system damping. Finally, provided aeroelastic coupling occurs (that is, 04z

#3
4f*t/f),

the value of the normalized critical rotation has a minor e!ect on the system frequency and
damping, particularly for large values of f*t/f.

Dotson et al. (1998a) computed force resultants F
a,1

and F
a,2

for M
=
"0)8 and 0)9 and

the Titan IV payload fairing geometry. The limit-cycle amplitude for Mach 0)8 is larger
because the force resultants for Mach 0)9 shift further aft from the payload fairing nose, and
the magnitude of their summation decreases. Titan IV #ight data (Dotson et al. 1998b)



Figure 13. Aeroelastic coupling e!ects as a function of Mach number: (a) system frequency; (b) system damping.
*, z

#3
"0; - - - -, z

#3
"f*t/f.

Figure 14. Comparison of analytic and derived estimates: (a) system frequency; (b) system damping. *,
Modi"ed bu!et analysis; D, range of random decrement estimates; d, mid-point of range; r, trial-and-error value.
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suggest that s"1 at roughly M
=
"0)8; in other words, limit-cycle oscillation is maximized

around Mach 0)8. It can be shown that the force resultants for M
=
"0)9, in this case, lead

to s"0)7. Wind-tunnel test data (Chevalier & Robertson 1963; Robertson & Chevalier
1963) also indicate that aeroelastic coupling does not occur when M

=
(0)7 or M

=
'1)0.

Using these limits, and the s values described above, the curves in Figure 13 can
be sketched.

A &&transonic hump'' in e!ective system sti!ness is evident in Figure 13(a), while a &&trans-
onic dip'' in e!ective system damping is apparent in Figure 13(b). The amplitude of the
&&transonic hump'' is relatively modest, but the minimum of the &&transonic dip'' approaches
zero. The e!ect of the critical nose de#ection (that is, the value of z

#3
) is secondary. These

observations are corroborated by plots of sti!ness and damping derived from wind-tunnel
test data (Ericsson & Reding 1986).



Figure 15. Displacement history from random decrement sti!ness and damping estimates:*, simulation; - - - -,
random decrement.
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5.6. COMPARISONS WITH RANDOM DECREMENT STIFFNESS AND DAMPING VALUES

E!ective system sti!ness and damping values for the Titan IV example are compared in
Figure 14 with values derived by applying the random decrement technique (Ibrahim 1977)
to the simulation time histories. The random decrement technique averages the random
excitation (induced, in this case, by bu!eting) out of the total system response, yielding the
homogeneous response from which e!ective system sti!ness and damping values can be
estimated. The technique has been used for the analysis of #utter data acquired during wind
tunnel tests (Hammond & Doggett 1975). The bars in Figure 14 represent uncertainty in the
random decrement estimates, and were established by conducting sensitivity studies with
the technique's parameters. Random decrement is relatively insensitive to these parameters
for large values of s. However, when 0)24s40)4, the amplitude of the aeroelastic coupling
response is roughly equal to that for bu!eting, and the random decrement result varies
signi"cantly, depending on the parameters chosen.

Figure 14 shows that the trends in the results from the modi"ed bu!et analysis and the
random decrement technique are similar. The e!ective system damping from equation (41a),
however, is lower than that estimated by the random decrement technique. Because the
applied force is known, the accuracy of the random decrement results can be assessed, as
were those from the modi"ed bu!et analysis (see Figure 11). The single-degree-of-freedom
linear response, computed using the random decrement sti!ness and damping estimates for
s"0)5, is compared in Figure 15 with the corresponding numerical simulation response.
The random decrement history is in-phase with the simulation, but the response amplitude
is signi"cantly underpredicted. Recall that the modi"ed bu!et analysis overpredicts the
response amplitude for this value of s [Figure 11(b)]. Responses computed by trial-and-
error variation of the damping value indicate that f

t
/f"0)11 yields the best agreement with

the simulation response and spectral amplitude, when s"0)5. As expected, this value lies
between the modi"ed bu!et and random decrement estimates in Figure 14(b). It can be
concluded that schemes that use time-invariant sti!ness and damping values to model
nonlinear motion may be heuristic but inaccurate.

6. CONCLUSIONS

The present theory provides straightforward closed-form equations for the prediction of
limit-cycle oscillation from aeroelastic coupling, based strictly on the idealized
force}response coupling relationship and the periodicity condition. This theory can be used
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to derive time-invariant aerodynamic sti!ness and damping values in the system equation
of motion, and the characteristics of these derived values are consistent with trends
observed in transonic wind tunnel test data. The conversion of alternating #ow forces into
aerodynamic sti!ness and damping terms, however, introduces an approximation that
tends to underestimate the response amplitude. More important, the use of these terms, in
an analysis intended to account comprehensively for aeroelastic coupling and bu!eting,
must "rst assess the relative contributions of aeroelastic coupling and bu!eting to the total
response. When the aeroelastic coupling contribution is large compared to that from
bu!eting, the modi"ed bu!et analysis approach is reasonably accurate. However, discrep-
ancies in response phasing and amplitude can result when the aeroelastic coupling contri-
bution to the total system response is not dominant.
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APPENDIX A: INSTANTANEOUS AERODYNAMIC STIFFNESS AND DAMPING

Aerodynamic sti!ness and damping expressions were derived in Section 5.2 based on the known
behavior of a single-degree-of-freedom system undergoing limit-cycle oscillation from aeroelastic



Figure A1. Decomposition of aeroelastic coupling force variation with f"2 Hz, f"2%, z
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coupling. In this section, these expressions are rederived through direct conversion of the force
variation m

a
. (The subscript a is herein dropped for the sake of clarity.) It will be shown that the

procedure leads to time-dependent aerodynamic sti!ness and damping values, unless the response and
force variation are approximated by harmonic functions.

The force variation m (z) can be divided into pulses and lags such that

m (z)"m
p
(z)#m

l
(z, *t). (A1)

The pulses are the force variation for instantaneous #ow alternations, while the lags account for the
time that it actually takes the #ow state to change. The force components shown in Figure A1 were
decomposed from numerical simulation output for an example problem examined by Dotson et al.
(1998a). It can be seen that the sum of the two force components gives the aeroelastic force variation
shown schematically in Figure 2.

The integral of the force variation with respect to displacement z yields

P
z(Te)

z(0)

m dz"P
Te

0

m
p
zR dq#P

Te

0

m
l
zR dq. (A2)

The integrands on the right-hand side are illustrated in Figure A2. It is apparent that the "rst of the
two integrals equals zero. It can be concluded from equation (12) that the pulses do not contribute to
the net work conducted during one cycle of excitation. This conclusion is consistent with derivations
in the displacement domain presented by Dotson et al. (1998a), and was con"rmed numerically using
the data plotted in Figure A2. Equation (12) consequently reduces to

P
z(Te)

z(0)

2fuzR dz"u2 P
z(Te)

z(0)

m
l
dz. (A3)

Combining the left- and right-hand side yields

P
z(Te)

z(0)

2u(f#nR )zR dz"0, (A4)

in which

nR "!um
l
/2zR . (A5)

Equation (A5) de"nes the instantaneous aerodynamic damping induced by self-sustained oscillations.
Time histories of the simulation force lags and system velocity are provided in Figure A3. Both of

these functions are very nearly even. The result of equation (A5) using these inputs is plotted in Figure
A4, and equals zero except for negative spikes coincident with the force lags. E!ective system
damping, de"ned by equation (30b), therefore, is actually time-dependent. It can be concluded that it is



Figure A2. Integrands for work conducted by force variation: *, m
l
zR ; - - - -, m

p
zR .

Figure A3. Force lag and system velocity histories: *, m
l
; - - - -, zR /u.

Figure A4. Analytic aerodynamic damping: *, instantaneous; - - - -, harmonic approximation.
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Figure A5. Force pulse and system displacement histories: *, m
p
; - - - -, z.

Figure A6. Analytic aerodynamic sti!ness: *, instantaneous; - - - -, harmonic approximation.
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ad hoc to require, as done in Section 5.2, that the aerodynamic damping be constant and equal to the
negative of the structural damping.

When *t@¹
e
, the "rst term in the Fourier series expansion of the force lags is de"ned by

m
l
(q)"

4*t

¹
e

sin(nt
p
/¹

e
) cos(u

e
(q#*t/2)). (A6)

Recall that the harmonic approximation for the response is de"ned by

z (q)"
2f*t

f
sin(nt

p
/¹

e
) sin(u

e
(q#*t/2)). (A7)

Substituting equation (A6) and the derivative of equation (A7) into equation (A5) yields

nR "!f, (A8)

which is identical to equation (33). Also, note that equation (A8) satis"es equation (A4) by forcing the
sum in the parentheses to equal zero for all time. As expected, the harmonic approximation facilitates
conversion of the equation of motion into the form of equation (36).
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Now consider the aerodynamic sti!ness term. Equation (8) can be rewritten for limit-cycle
oscillation as

z( (q)#2fu zR (q)#u2z (q)"u2[m
p
(z)#m

l
(z, *t)]. (A9)

Moving the force lags to the left-hand side yields

z( (q)#2u (f#nR ) zR (q)#u2z(q)"u2m
p
(z), (A10)

in which the aerodynamic damping term is de"ned by equation (A5).
It was shown that the pulse component of the force variation does not contribute to the net work

done on the system and, hence, does not alter the system damping. The pulse time history, further-
more, is de"ned strictly by the instantaneous system displacement. These observations, and the fact
that the frequency for limit-cycle oscillation does not equal the bending mode natural frequency,
suggests a posteriori that conversion of the pulses modi"es the coe$cient u2. Moving this remaining
force component to the left-hand side leads to equation (28), in which

n"!m
p
/z. (A11)

Time histories of the simulation force pulses and system displacement are plotted in Figure A5. Both
of these functions are very nearly odd. The result of equation (A11) is plotted in Figure A6.

The "rst term in the Fourier series expansion of the force pulses is de"ned by

m
p
(q)"!

4

n
sin(nt

p
/¹

e
) sin(u

e
(q#*t/2)). (A12)

Substituting equations (A7) and (A12) into (A11) yields

n"4f/u*t, (A13)

which is identical to equation (35) and, hence, consistent with the harmonic approximation of the
system response presented in Section 5.2.

APPENDIX B: CONSTANTS IN MULTIFREQUENCY SOLUTION

The constants that satisfy the displacement, velocity, and periodicity conditions for the multi-
frequency solution are

C
1
"[tan(u¹

e
/4)(sin(ut

b
)!sin(u t

a
))#(cos(u t

b
)!cos(ut

a
))]/u *t, (B1)

C
2
"0, (B2)

C
3
"[tan(u¹

e
/4) (sin(u t

b
)!sin(ut

a
))#cos(ut

b
)]/u*t, (B3)

C
4
"!sin(ut

a
)/u*t, (B4)

C
5
"[tan(u¹

e
/4)(sin(ut

b
)!sin(ut

a
))]/u*t, (B5)

C
6
"[sin(ut

b
)!sin(ut

a
)]/u*t, (B6)

C
7
"[tan(u¹

e
/4)(sin(ut

b
)!sin(ut

a
))!cos(u¹

e
/2) cos(ut

b
)!sin(u¹

e
/2) sin(ut

b
)]/u*t, (B7)

C
8
"[(1!cos(u¹

e
/2)) sin(ut

b
)!sin(ut

a
)#sin(u¹

e
/2) cos(ut

b
)]/u*t, (B8)

C
9
"!cos(u¹

e
/2) [tan (u¹

e
/4) (sin(ut

b
)!sin(ut

a
))#cos(ut

b
)!cos(ut

a
)]/u*t, (B9)

C
10
"[(1!cos(u¹

e
/2))(sin(ut

b
)!sin(ut

a
))#sin(u¹

e
/2)(cos(ut

b
)!cos(ut

a
))]/u*t. (B10)

APPENDIX C: NOMENCLATURE

AF dynamic ampli"cation factor, dimensionless
[C*] system modal damping matrix, N s/m and N s/rad
C

1
}C

10
constants in multifrequency solution, dimensionless

f natural frequency of a single-system mode, Hz
F system external force, N
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g component of function m
a
(t), dimensionless

MF(t)N vector of system external forces, N
[I] system modal mass matrix (identity matrix), kg
M

=
freestream Mach number, dimensionless

n normalized aerodynamic sti!ness for a single-system mode, dimensionless
nR normalized aerodynamic damping for a single-system mode, dimensionless
q(t) generalized displacement for a single-system mode, m
qR (t) generalized velocity for a single-system mode, m/s
q( (t) generalized acceleration for a single-system mode, m/s2
Mq(t)N vector of system generalized displacements, m and rad
MqR (t)N vector of system generalized velocities, m/s and rad/s
Mq( (t)N vector of system generalized accelerations, m/s2 and rad/s2
R relative measure of aeroelastic coupling contribution to total response, dimensionless
s aeroelastic coupling signal strength, dimensionless
t time (transient motion), s
t
a
!t

d
time points in idealized force representation, s

t
p

force pulse width, s
¹

e
excitation period, s

u component of function m
a
(t), dimensionless

;
=

velocity of external #ow, m/s
Mx(t)N vector of physical system displacements, m and rad
z generalized translation normalized with respect to a static value, dimensionless
*t time required for #ow state change, s
d displacement parameter, dimensionless
f structural damping (as a ratio to the critical value) for a single-system mode, dimen-

sionless
g aerodynamic sti!ness for a single-system mode, rad2/s2
gR aerodynamic damping for a single-system mode, rad/s
h rotation, deg
m force variation, dimensionless
q time (steady-state motion), s
/ modal value for a single-system mode, 1/kg
[/] system modes matrix, dimensionless
u undamped circular natural frequency of a single-system mode, rad/s
u

e
2n/¹

e
"circular frequency of excitation, rad/s

uN damped circular natural frequency of a single-system mode, rad/s
[u2] system modal sti!ness matrix, N/m and N/rad

Subscripts
a aeroelastic coupling
b bu!eting
cr critical
f physical force application points
i bending mode number
l lag
n nose
p pulse
r rotation
rms root mean square
st static
t total (or e!ective)


	1. INTRODUCTION
	Figure 1
	Figure 2

	2. ANALYSIS APPROACH
	Figure 3

	3. AEROELASTIC COUPLING ANALYSIS
	Figure 4

	4. NUMERICAL SIMULATIONS
	Figure 5
	Figure 6

	5. MODIFIED BUFFET ANALYSIS
	Figure 7
	Figure 8
	Figure 9
	Figure 10
	Figure 11
	Figure 12
	Figure 13
	Figure 14
	Figure 15

	6. CONCLUSIONS
	REFERENCES
	APPENDIX A: INSTANTANEOUS AERODYNAMIC STIFFNESS AND DAMPING
	Figure A1
	Figure A2
	Figure A3
	Figure A4
	Figure A5
	Figure A6

	APPENDIX B: CONSTANTS IN MULTIFREQUENCY SOLUTION
	APPENDIX C: NOMENCLATURE

